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Consider the PDE
ut + L[u] = 0; (1)

for (x; y) 2 
, subject to the boundary conditions

uj@
 = 0; (2)

and initial condition
u(x; y; 0) = g(x; y) (3)

where g is a known function. Let �n be a set of functions de�ned in 
 and
satisfying (2)-(3). We assume that these functions form a basis for the set of
squre-integrable function in 
, i. e., any function f with the property thatZ




jf j2 dxdy <1:

Any such function can be expanded in terms of �n:

f =

1X
n=1

an�n: (4)

When the functions �n are orthogonal, i. e.,Z



�m(x; y)�n(x; y) dxdy = 0; if m 6= n; (5)

then it is easy to determine an: Multiply both sides of (4) by �i, where i is a
�xed index, and integrate the result over 
 to get

Z



f(x; y)�i(x; y) dxdy =
1X
n=1

an

Z



�n(x; y)�i(x; y) dxdy:

But, according to (5), the only integral on the right-hand side that survives isR


phi2i (x; y) dxdy, hence the above expression reduces to

Z



f(x; y)�i(x; y) dxdy = ai

Z



�2i (x; y) dxdy

1



from which one computes

ai =

R


f(x; y)�i(x; y) dxdyR


�2i (x; y) dxdy

: (6)

Formula (6) is the familiar formula of Fourier.
Let's use the short-hand notation (f; g) for the integral of the product of f

and g, i. e.,

(f; g) =

Z



f(x; y)g(x; y) dxdy: (7)

In terms of (7), the Fourier formula (6) can be written as

ai =
(f; �i)

(�i; �i)
; i = 1; 2; ::: (8)

Now let's go back to our original initial-boundary value problem. The
Galerkin method suggests seeking a solution of (1), (2), (3) in the form

u(x; y; t) =
X

an(t)�n(x; y) (9)

for a basis �n which satis�es the boundary condition in (2). Since the ansatz (2)
is to be a solution of the PDE, it must satisfy that equation, so we substitute
it into (1) to get

1X
n=1

a0n(t)�n(x; y) + L[
X
n=1

an(t)�n(x; y)] = 0:

We next multiply both sides of this equation by �i, for a �xed i and integrate
over 
. Using the notation in (7) we have

1X
n=1

a0n(t)(�n; �i) + (L[

1X
n=1

an�n]; �i] = 0; i = 1; 2; ::: (10)

Also, after evaluating (9) at t = 0 and using the information in (3), we have

g(x; y) =

1X
n=1

an(0)�n(x; y):

We multiply this equation by �i and integrate over 
 to get

(g; �i) =

1X
n=1

an(0)(�n; �i); i = 1; 2; ::: (11)

Note that because g and � are known functions, all of the integrals of the form
(g; �i) and (�n; �i) can be computed, often rather easily and inexpensively. This
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way, our initial-boundary value problem (1), (2), (3) is redeuced to a system of
ini�nitely many ordinary di�erential equations given by (10) with initial data
given in (11). A large body of the mathematics of the latter half of the twentieth
century has been dedicated to understanding under what conditions our initial-
boundary value problem is equivalent to the ini�nite system of ODEs described
above.

One of the most desirable aspects of the Galerkin method is that it applies to
nonlinear problems as well as to linear problems. Another desiable property is
the ease with which one can implement this technique on a computer, especially
when the geometry of the domain is simple. The implementation is particu-
larly simple when the basis functions are orthogonal. The following examples
illustrate these points.

1 Example 1: Heat Equation

Let's consider the case when 
 is a unit square and

L[u] = ��u:

Then (1) becomes
ut ��u = 0: (12)

Let
�mn = sinn�x sinn�y: (13)

(why do we introduce �mn in place of �n?) Note that �mn already satis�es the
zero boundary condition on the boundary of the unit square. The ansatz in (9)
takes the form

u(x; y; t) =

1X
n=1

1X
m=1

amn(t) sinn�x sinm�y: (14)

It is easy to show that �mn are orthogonal, i.e.,

Z 1

0

Z 1

0

sinn�x sinm�y sin i�x sin j�y dxdy = 0

if i 6= n and j 6= m. Substituting (14) into (12) yields

1X
m=1

1X
n=1

a0mn(t)�mn �

1X
m=1

1X
n=1

amn��mn = 0:

Multiply the above equation by �ij and integrate over 
 to get

1X
m=1

1X
n=1

cmnija
0
mn(t)�

1X
m=1

1X
n=1

dmnijamn(t) = 0; (15)
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where

cmnij =

Z 1

0

Z 1

0

sinm�x sinn�y sin i�x sin j�y dxdy and

dmnij =

Z 1

0

Z 1

0

�(sinm�x sinn�y) sin i�x sin j�y dxdy:

It is easy to compute the above integrals using the orthogonality of the sine

functions. In fact cmnij =
1

4
�mi�nj and dmnij = �m2

+n2

4
�mi�nj .

Let
u(x; y; 0) = g(x; y) (16)

de�ne the initial state of u. The di�erential equations in (15) are supplemented
with the initial data as described in (11). In practice, we replace1 byM in (16)
and (11) and solve the resulting M2 ODEs numerically to get an approximate
solution of our problem. The following program in Mathematica will do the job.

2 Example 2: Reaction Di�usion Equation

Consider the PDE
ut = u(1� u) + �u (17)

in the unit square. We choose the same basis function and ansatz as in Example
1 (see (14). Now substitute (14) into (17) to get

1X
m=1

1X
n=1

a0mn(t)�mn =
1X

m=1

1X
n=1

amn(t)�mn�
1X

m=1

1X
n=1

1X
k=1

1X
l=1

amn(t)akl(t)�mn�kl+
1X

m=1

1X
n=1

amn��mn:

The quadruple sum in the above expression is due to the u2 in (17). As before
we multiply this equation by �ij and integrate over 
 to get

1X
m=1

1X
n=1

bmnija
0
mn(t) =

1X
m=1

1X
n=1

cmnijamn(t)�

1X
m=1

1X
n=1

1X
k=1

1X
l=1

dmnklijamn(t)akl(t)+

1X
m=1

1X
n=1

emnijamn(t)

(18)
where the coe�cients b, c, d and e involve the various integrals of �mn. The
above system is considerably di�erent from the one we get from the heat equa-
tion in that the latter is a nonlinear system. This fact presents a challenge to
any computing system when we replace1 withM2 since we are often interested
in the large time (steady-state) behavior of this problem so the M2 ODEs need
to be integrated over a long time interval. The following Mathematica program
shows how one handles this problem when M is in the range of 5 to 10.
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